January 14, 2013

MIT Spinoff Improves Amp Efficiency

This article originally appeared in the Dec. 2012 issue of Next Gen Mobility Magazine.

A startup called ETA Devices says it’s cracked the nut on wireless powering.

The company’s solution relies on a more efficient amplifier design which, unlike your traditional solutions, doesn’t waste more than 65 percent of energy, according to a recent piece in the MIT (News - Alert) Technology Review.

“The new advance is essentially a blazingly fast electronic gearbox,” the publication explains. “It chooses among different voltages that can be sent across the transistor, and selects the one that minimizes power consumption, and it does this as many as 20 million times per second. The company calls the technology asymmetric multilevel outphasing.

“The problem they are attacking affects not only when you are literally transmitting something, but also when you are receiving,” the piece goes on to say. “In the latter situation, the amplifier is busy as the device continually sends out messages confirming the receipt of packets –collections of bits that make up a unit of Internet communications – or alerting the network when packets are missing.”

Technology from ETA Devices, which was cofounded MIT electrical engineering professors Joel Dawson and David Perreault, is expected to be used starting next year in LTE (News - Alert) base stations and, later, in chip-scale solutions for smartphones.

The research page of Perreault’s MIT website says: “Power electronic circuits process and control electrical energy, and are critical elements in many kinds of systems. The rapid evolution of technology is generating a demand for power electronics whose capabilities greatly exceed what is presently achievable. Challenges of particular importance include miniaturization and integration of power electronics, and improving their cost and dynamic performance.  Miniaturization is difficult in part because the magnetic components used in most power circuits scale down poorly in size.  Likewise, achieving integration and low cost is difficult because of the diverse materials and assembly methods that are required for contemporary designs.

“My research group is working to address these challenges through a combination of new technologies. One research focus is on the development of improved power passive components.  Passive components such as inductors and capacitors often dominate the size and cost of power circuits, and limit their efficiency, noise attenuation, and transient performance. In one effort, we are developing means to improve the performance of passive filter components by compensating for their parasitics. These efforts have led to new integrated filter components with much better performance than conventional passives.  Likewise, we are developing new types of power passive components that better scale to small sizes and high frequencies.  Construction of these components using microfabrication techniques is also being explored, with the goal of enabling integrated fabrication of power converters.

“A second research focus is the development of techniques to achieve greatly increased switching frequencies in power converters. Higher frequencies are desirable because they enable faster transient response and reduce passive component requirements. Moreover, at sufficiently high frequencies, batch fabrication of many circuit components may become possible, enabling higher levels of integration to be achieved. We are exploring new system architectures, circuit designs, and control methods that together enable substantial increases in operating frequency over the present state of the art.  It is anticipated that the technologies under development will lead to miniaturized, highly integrated power electronics.

“In addition to developing fundamental power conversion technologies, we are applying them in a variety of applications.  Automotive power generation and control is one such area.  For example, we have investigated the application of power electronics to enhance the efficiency, power, and transient performance of automotive alternators.  We have also developed dc/dc converters and other power electronics for automotive applications, with the goal of enabling improved performance, safety, and comfort in vehicles.  Other areas of interest include power components and circuits for industrial, commercial, consumer, and medical applications where improved size, efficiency, and performance are of importance.”


Big Brands Agree, Power Matters

The Power Matters Alliance recently announced that three of the nation’s best-known companies have recently become members. AT&T (News - Alert), Google and Starbucks are now part of the PMA, which was founded by Powermat Technologies and Procter & Gamble. PMA aims to set a global powering standard and create an ecosystem for wireless power.

“Smartphones and fast networks have transformed our mobile experience, and the next frontier is ensuring that these devices never run out of power,” says Jeff Howard, vice president devices and accessories at AT&T. “We believe the PMA has the right organizational framework, the right institutional backing and the most promising technological platform. We look forward to a future where all of our devices can charge seamlessly in the home, in the car and in the coffee shop – and expect that such a future is at hand.”

AT&T sells PMA-compatible wireless power cases and charging surfaces in select markets.

Starbucks is testing PMA-compatible Wireless Charging Spots in select Boston stores.

Edited by Brooke Neuman

comments powered by Disqus

Meet the Editorial Team

Rich Tehrani,
Since 1982 Rich has led TMC© in many capacities. Rich Tehrani is an IP Communications industry expert, visionary, author and columnist. He founded INTERNET TELEPHONY® magazine...Read More >>>
Carl Ford,
Partner and Community Developer, Crossfire Media
Today as a partner at Crossfire Media, Carl is developing programs that bring to light an understanding of the issues required for delivering broadband wireless Internet...Read More >>>
Erik Linask,
Group Editorial Director, TMC
Erik oversees the editorial content and direction for all of TMC. Erik has contributed literally thousands of features during his 5-year tenure, with a focus...Read More >>>
Paula Bernier,
Executive Editor, IP Communications Group
Paula oversees editorial content and operations of INTERNET TELEPHONY and Next Gen Mobility Magazines. Bernier is...Read More >>>
Paula Bernier,
CTO & Executive Technology Editor
om is executive technology editor for TMC® Labs, the industry’s most-well known and respected testing lab, and ...Read More >>>